Utilizing the electron transfer mechanism of chlorophyll a under light for controlled radical polymerization.

نویسندگان

  • Sivaprakash Shanmugam
  • Jiangtao Xu
  • Cyrille Boyer
چکیده

Efficient photoredox catalysts containing transition metals, such as iridium and ruthenium, to initiate organic reactions and polymerization under visible light have recently emerged. However, these catalysts are composed of rare metals, which limit their applications. In this study, we report an efficient photoinduced living radical polymerization process that involves the use of chlorophyll as the photoredox biocatalyst. We demonstrate that chlorophyll a (the most abundant chlorophyll in plants) can activate a photoinduced electron transfer (PET) process that initiates a reversible addition-fragmentation chain transfer (RAFT) polymerization under blue and red LED light (λmax = 461 and 635 nm, respectively). This process controls a wide range of functional and non-functional monomers, and offers excellent control over molecular weights and polydispersities. The end group fidelity was demonstrated by NMR, UV-vis spectroscopy, and successful chain extensions for the preparation of diblock copolymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes

This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal ep...

متن کامل

Synthesis and identification of polystyrene via conventional and controlled radical polymerization methods: Effect of temperature, initiator and transfer agent on molecular weight and reaction rate

Polystyrene (PSt) has been known as one of the important polymers with a wide range of applications. Ability to synthesize PSt with different but predictable molecular weights for various applications is very important in the laboratories and industries. In this study, using various simple and inexpensive techniques with only free radical mechanism, it was tried to synthesize PSt with different...

متن کامل

Preparation of Reactive and Thermal Stable Hyperbranched Graft Copolymers/ Clay Nanocomposite via ‘Living’ Free Radical Polymerization

Exfoliated poly (Chloromethyl styrene-co-styrene)-g-polyacrylonitryle/organo- modified montmorillonite [P(CMSt-co-St)-g-PAN/O-MMT] nanocomposite was synthesized through solution intercalation method by using atom transfer and nitroxide mediated radical polymerization. At first, poly (chloromethyl styrene-costyrene) copolymer was synthesized by nitroxide - mediated “living” free radical polyme...

متن کامل

Photo-Induced Electron Transfer in Chlorophyll Containing Liposomes

Liposomes (lipid, DL-a-dipalmitoyl-phosphatidylcholine) containing chlorophyll a (ratio lipid to chlorophyll 30:1) exhibit an absorption maximum at 670 nm. Upon oxidation with iodine these liposomes yield a chlorophyll radical that shows a ESR signal with a line width (peak to peak) A Y = ~0.1 G and a g-value of 2.0022, consistent with the presence of monomeric chlorophyll. Under anaerobic cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2015